An Empirical Study of Fault Localization Families and Their Combinations

Daming Zou, Jingjing Liang, Yingfei Xiong, Michael D. Ernst, and Lu Zhang

Abstract—The performance of fault localization techniques is critical to their adoption in practice. This paper reports on an empirical study of a wide range of fault localization techniques on real-world faults. Different from previous studies, this paper (1) considers a wide range of techniques from different families, (2) combines different techniques, and (3) considers the execution time of different techniques. Our results reveal that combined technique significantly outperforms any individual technique (200% increase in defects localized in Top 1), suggesting that combination may be a desirable way to apply fault localization techniques and future techniques should also be evaluated in the combined setting. Our implementation is publicly available for evaluating and combining fault localization techniques.

Index Terms—Fault localization, learning to rank, program debugging, software testing, empirical study.

1 INTRODUCTION

The goal of fault localization is to identify the defective program elements related to software failures. Manual fault localization is a notoriously time-consuming and tedious task that depends on the programmer’s experience and analysis. Automated fault localization uses static and run-time information about the program (test coverage, program dependency, test output, execution results of mutated programs, etc.) to identify program elements that may be the root cause of the failure. This paper considers seven families of fault localization techniques, which take as input seven different types of information:

- Spectrum-based fault localization (SBFL) \[1\], \[2\], \[3\]: utilizing test coverage information
- Mutation-based fault localization (MBFL) \[4\], \[5\]: utilizing test results collected from mutating the program
- (Dynamic) program slicing \[6\], \[7\]: utilizing the dynamic program dependency
- Stack trace analysis \[8\], \[9\]: utilizing error messages
- Predicate switching \[10\]: utilizing test results from mutating the results of conditional expressions
- Information retrieval-based fault localization (IR-based FL) \[11\]: utilizing bug report information
- History-based fault localization \[12\], \[13\]: utilizing the development history

Some techniques compute a suspiciousness score for each program element and can generate a ranked list of elements, such as spectrum-based fault localization. Other techniques only mark a set of elements as suspicious, such as dynamic program slicing.

The performance of fault localization is critical to its adoption in practice. Fault localization techniques are helpful only when the root causes are ranked at a high absolute position \[14\], \[15\]; the position should be within the top 5 \[16\]. A number of empirical studies \[17\], \[18\], \[19\], \[20\] have evaluated the performance of SBFL and MBFL. However, no empirical study has evaluated the performance of other techniques on real-world defects, as far as we know.

This paper reports on an empirical study of fault localization techniques. Our study aims to include a wide range of fault localization techniques from different families, including SBFL, MBFL, program slicing, predicate switching, stack trace analysis, information retrieve-based fault localization, and history-based fault localization. Following the insight from existing work \[17\] that the performance of fault localization techniques may differ between real faults and artificial faults, our study is based on 357 real-world faults from the Defects4J dataset \[21\].

In contrast to previous studies, our study explores mainly two novelty aspects. First, since techniques in different families use different information sources, it is interesting to know how much these techniques are correlated to each other. We measured the correlation between different pairs of techniques and explored the possibility of combining these techniques using learning to rank model \[22\]. In contrast, previous work usually considers techniques in one or a few families, e.g., combining different formulae in SBFL \[23\] or combining SBFL and history-based techniques \[25\], and our work is the first to explore the combinations of a wide range of techniques that rely on different information sources.

The second novelty is that we measured the time cost of different fault localization techniques. Existing studies have shown that efficiency and scalability are both critical to the adoption of fault localization techniques \[16\]. Thus, a good fault localization approach must balance between localization performance and cost. We have considered different usage scenarios to find the best balance in practice.

We also improved the measurement of fault localization...
performance by designing a new measurement E_{inspect} that correctly calculates the expected rank when multiple faulty elements are presented in ties.

Finally, we have released our experimental infrastructure. This experimental infrastructure can be used by other researchers to evaluate fault localization techniques and to combine different fault localization techniques.

Our study has the following main findings:

- On real-world faults, all techniques except for Bugspots localize more than 6% faults at top 10, while the best family, SBFL, localizes about 44% faults at top 10.
- Most techniques in our study have a weak correlation, especially those in different families, indicating the potential of combining them.
- Combining techniques improves performance significantly: 200/63/51/31% increase in top 1/3/5/10 localized defects, and 48% decrease in examined elements compared to the best standalone technique.
- This combined technique also outperforms the four state-of-art fault localization approaches, MULTRIC [23], Savant [24], FLUCCS [25], and TraPT [26] by 133%, 167%, 11% and 18% in Top 1 correspondingly.
- Time costs of different fault localization families can be categorized into several levels. When using a technique at one time cost level, it does not affect run time, but does improve fault localization effectiveness, to include all techniques from the preceding levels.
- The above findings hold at both statement and method granularities — that is, when the FL technique is identifying suspicious statements and when it is identifying suspicious methods.

To sum up, the paper makes the following contributions.

- The first empirical study that compares a wide range of fault localization techniques on real faults.
- A combined technique that is configurable based on the time cost, and the peak performance of the technique significantly outperforms single techniques.
- An infrastructure for evaluating and combining fault localization techniques for future research.

The rest of the paper is organized as follows. Section 2 introduces the background of several fault localization families. Section 3 presents the empirical evaluation setups. Section 4 shows the experiment results and answers the research questions. Section 5 discusses the related studies. Section 6 discusses the implications for future research. And Section 7 concludes.

2 Background

Commonly, a fault localization technique takes as input a faulty program and a set of test cases with at least one failed test, and generates as output a potentially ranked list of suspicious program elements. Recently, some approaches [11], [13], [27] considered other input information, such as the bug report or the develop history. This paper also considers these approaches. The common levels of granularity for program elements are statements, methods, and files. This paper uses statements as program elements, except for Section 4.5 which compares results for different granularities.

This section first introduces seven families of fault localization techniques, and then introduces the learning to rank model for combining different techniques.

2.1 Spectrum-Based Fault Localization

A program spectrum is a measurement of run-time behavior, such as code coverage [3]. Collofello and Cousins proposed that program spectra be used for fault localization [28]. Comparing program spectra on passed and failed test cases enables ranking of program elements. The more frequently an element is executed in failed tests, and the less frequently it is executed in passed tests, the more suspicious the element is.

Typically, an SBFL approach calculates suspiciousness scores using a ranking metric [29], or risk evaluation formula [1], [30], based on four values collected from the executions of the tests, as shown in Table 1. For example, Ochiai [2] is an effective SBFL technique [30] using the formula:

$$Ochiai(\text{element}) = \frac{e_f}{\sqrt{(e_f + n_f) \cdot (e_f + e_p)}}$$

DStar [31] is another effective technique [17], [32] using the formula:

$$DStar(\text{element}) = \frac{e_f}{e_p + n_f}$$

DStar’s notation ‘$*$’ is a variable, which we set to 2 based on the recommendation from Wong et al. [31].

2.2 Mutation-Based Fault Localization

Mutation-based fault localization uses information from mutation analysis [33], rather than from regular program execution, as inputs to its ranking metric or risk evaluation formula. While SBFL techniques consider whether a statement is executed or not, MBFL techniques consider whether the execution of a statement affects the result of a test [17]. If a program statement affects failed tests more frequently and affects passed tests more rarely, it is more suspicious.

A mutant is said to be killed by a test case if the test case has different execution results on the mutant and the original program [34]. A test case that kills mutants may carry diagnostic information. MBFL injects mutants into the program under test. MUSE [5] and Metallaxis-FL [4] are two state-of-the-art MBFL techniques. For a statement s, a MBFL technique:

<table>
<thead>
<tr>
<th>TABLE 1: Input Values for Spectrum-Based Fault Localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_f</td>
</tr>
<tr>
<td>e_p</td>
</tr>
<tr>
<td>n_f</td>
</tr>
<tr>
<td>n_p</td>
</tr>
</tbody>
</table>
generates a set of mutants \(m(s) = \{m_1(s), m_2(s), \ldots\} \), assigns each mutant a score \(S_{\text{mutant}}(m_i(s)) \), and aggregates the scores to a statement suspiciousness score \(S_{\text{statement}}(s) \).

MUSE assigns each mutant a suspiciousness score as follows:

\[
S_{\text{mutant}}(m_i) = \frac{\text{failed}(m_i) - \frac{f2p}{p2f} \cdot \text{passed}(m_i)}{\sqrt{\text{total} \cdot \text{failed}(m_i) + \text{passed}(m_i)}}
\]

where \(\text{failed}(m_i) \) is the number of test cases that failed on the original program and now pass on a mutant \(m_i \) and likewise for \(\text{passed}(m_i) \). \(f2p \) is the number of test cases that change from fail to pass between before and after all mutants, and likewise for \(\text{p}2f \). To aggregate mutant suspiciousness score into a statement suspiciousness score, MUSE uses \(S_{\text{statement}}(s) = \frac{\text{Avg}}{\sum} \left(r_{m_i} \cdot S_{\text{mutant}}(m_i) \right) \)

Metallaxis assigns each mutant a suspiciousness score using the Ochiai formula:

\[
S_{\text{mutant}}(m_i) = \frac{\text{failed}(m_i)}{\text{total} \cdot \text{failed}(m_i) + \text{passed}(m_i)}
\]

where \(\text{failed}(m_i) \) is the number of test cases that failed on the original program and now the output changes on a mutant \(m_i \), and similarly for \(\text{passed}(m_i) \). \text{total} is the total number of test cases that fail on the original program. Note that the definition of killed in MUSE and Metallaxis is different. In MUSE, a failed test case must change to passed to count as killing a mutant. In Metallaxis, a failed test case only needs to generate a different output (may still be failed) to count as killing a mutant.

2.3 Program Slicing

A program slice is a subset of program elements that potentially affect the slicing criterion: a set of specific variables. For example, a slicing criterion could be a pair \(\langle l, V \rangle \), where \(l \) is a program location and \(V \) is a set of variables. Program slicing determines the program elements that have a direct or indirect effect on the values of variables in \(V \) at the program location \(l \).

Program slicing was introduced as a debugging tool to reduce a program to a minimal form while still maintaining a given behavior. Static slicing only uses the source code and accounts for all possible executions of the program.

Dynamic slicing focuses on one execution for a specific input. A dynamic slice contains all statements that may affect the values in the slicing criterion for a specific execution. The key difference between dynamic slicing and static slicing is that dynamic slicing only includes executed statements for specific input, but static slicing includes possibly-executed statements for all potential inputs. Since dynamic slices are significantly smaller, they are more suitable and effective for program debugging.

The following example shows the difference between static slicing and dynamic slicing.

```c
int collatz(int x)
{
1:    int res;
2:    if ((x % 2) == 0)
3:        res = x / 2;
4:    else
5:        res = x * 3 + 1;
6:    return res;
}
```

The collatz function returns \(x/2 \) when \(x \) is even and returns \(3x + 1 \) when \(x \) is odd. Let the slicing criterion be \(\text{res} \) at line 6. Static slicing includes statements in both the then and else block, because both may affect the value of \(\text{res} \). Dynamic slicing considers a particular execution of the program. For example, for \(x=3 \), the dynamic slice would contain line 5, but would not contain line 3.

2.4 Stack trace Analysis

A stack trace is the list of active stack frames during execution of a program. Each stack frame corresponds to a function call that has not yet returned. Stack traces are useful information sources for developers during debugging tasks. When the system crashes, the stack trace indicates the sequence of function calls and the point where the crash occurred.

2.5 Predicate Switching

Predicate switching is a fault localization technique designed for the faults related to control flow. A predicate, or conditional expression, controls the execution of different branches. If a failed test case can be changed to a passed test case by modifying the evaluated result of a predicate, the predicate is called a critical predicate and may be the root cause of the fault.

The technique first traces the execution of the failed test and identifies all instances of branch predicates. Then it repeatedly re-runs the test, forcibly switching the outcome of a different predicate each time. Once switching a predicate produces the correct output, it reports this predicate as a critical predicate. The critical predicate is potentially the cause of the fault.

Predicate switching seems to be similar to MBFL techniques, as they both apply mutations and examine the change of the execution results. However, we still treat predicate switching as a different family because predicate switching mutates program states rather than the program itself. For example, if a conditional expression has been evaluated multiple times during the program execution, predicate switching inverses one evaluation at a time instead of all evaluations. Furthermore, the existing works do not include predicate switching as an MBFL approach as far as we are aware.

2.6 Information Retrieval-Based Fault Localization

The early goals of information retrieval (IR) area are indexing text and searching for useful documents in a collection. Recently, some studies have applied information retrieval techniques to fault localization. These approaches take as input a bug report, rather than a set of test cases, and generates as output a list of relevant source code files.

These approaches treat the bug reports as a query and then rank the source code files by their relevance to the...
query. Unlike aforementioned fault localization families, IR-based fault localization techniques do not require program execution information, such as passed and failed test cases. They locate relevant files based on the bug report [11].

2.7 History-Based Fault Localization

As a general rule, program files that contained more bugs in the past are likely to have more bugs in the future [12]. Development history can be used for fault prediction, which ranks the elements in a program by their likelihood to be defective before any failure has been discovered [12]. Traditionally, fault prediction and fault localization are considered as different problems. However, since they both produce a list of suspicious elements, we also consider fault prediction techniques in this paper.

In particular, we consider a simple fault prediction technique introduced by Rahman et al. [13]. This technique simply ranks files by the number of fixing changes applied on them. This simple technique has the same utility for inspections as a more sophisticated fault prediction technique FixCache [12].

2.8 Learning to Rank

Learning to rank techniques train a machine learning model for a ranking task [43]. Learning to rank is widely used in Information Retrieval (IR) and Natural Language Processing (NLP) [44]. For example, in document retrieval, the task is to sort documents by the relevance to a query. One way to create the ranking model is with expert knowledge. By contrast, learning to rank techniques improve ranking performance and automatically create the ranking model, integrating many features (or signals).

Liu categorized learning to rank models into three groups [44]. Pointwise techniques transform the rank problem into a regression or ordinal classification problem for the ordinal score in the training data. Pairwise techniques approximate the problem by a classification problem: creating a classifier for classifying item pairs according to their ordinal position. The goal of pairwise techniques is to minimize ordinal inversions. Listwise techniques take ranking lists as input and evaluate the ranking lists directly by the loss functions.

Recently, Xuan and Monperrus showed that learning to rank model can be used to combine different formulae in SBFL [23]. The basic idea is to treat the suspiciousness score produced by different formulae as features and use learning to rank to find a model that ranks the faulty element as high as possible. In this paper we apply learning to rank similarly to combine approaches from different families.

3 Experiment Setup

3.1 Experiment Overview and Research Questions

Our experiments investigate the following research questions.

RQ1: How effective are the standalone fault localization techniques?

This question helps us to understand the performance of widely-used techniques.

RQ2: Are these techniques correlated? What is their correlation?

This question explores the possibility of combining different techniques. If different techniques are not correlated, then combining them may archive better performance.

RQ3: How effectively can we combine these techniques using learning to rank?

This question considers a specific way of combining different techniques, and evaluates the performance of the combined technique.

RQ4: What is the run-time cost of standalone techniques and combined techniques?

The previous question only concerns the effectiveness of the combined techniques. This question considers the efficiency. An ideal technique should achieve a balance between effectiveness and efficiency.

RQ5: Are the results the same for statement and method granularity?

We shall answer the preceding four questions first at statement granularity, which is often used in evaluating fault localization approaches [30], [45] and are used in downstream applications such as program repair. On the other hand, several studies have suggested that method may be a better granularity for developers [24], [46], so we repeated the experiments for the above questions at the method granularity.

RQ6: How effective the combined approach is when compared with the state-of-the-art techniques?

Recently, a set of new fault localization approaches were proposed. Interestingly, they also use learning to rank to combine existing techniques or other features. This research question compares the performance of our combined approach to these approaches.

3.2 Experiment Subjects

Our experiments evaluate fault localization techniques on the Defects4J [21] benchmark, version v1.0.1 (Table 2). Defects4J contains 357 faults minimized from real-world faults in five open-source Java projects. Many previous studies on fault localization used Defects4J as their benchmarks [17], [24], [47]. For each fault, Defects4J provides a faulty version of the project, a fixed version of the project, and a suite of test cases that contains at least one failed test case that triggers the fault.

TABLE 2

<table>
<thead>
<tr>
<th>Project</th>
<th>Faults</th>
<th>LOC*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apache Commons Math</td>
<td>106</td>
<td>103.9k</td>
</tr>
<tr>
<td>Apache Commons Lang</td>
<td>65</td>
<td>49.9k</td>
</tr>
<tr>
<td>Joda-Time</td>
<td>27</td>
<td>105.2k</td>
</tr>
<tr>
<td>JFreeChart</td>
<td>26</td>
<td>132.2k</td>
</tr>
<tr>
<td>Google Closure compiler</td>
<td>133</td>
<td>216.2k</td>
</tr>
<tr>
<td>Total</td>
<td>357</td>
<td>138.0k</td>
</tr>
</tbody>
</table>

[1] https://github.com/AlDanial/cloc
3.3 Studied Techniques and Their Implementations

A fault localization technique outputs one of the following:

- A ranked list. Examples include the SBFL, MBFL, stack trace, and history-based families, and one slicing technique.
- A suspicious set. The techniques cannot further distinguish the suspiciousness between these elements. Examples include the predicate switching family and some slicing techniques.

3.3.1 SBFL and MBFL

Pearson et al. [17] studied the performance of SBFL and MBFL on Defects4J, and our experiments reuse their infrastructure and the collected test coverage information. In particular, since our goal is to compare fault localization techniques in different families, this study does not include all SBFL techniques. For SBFL, we used the two techniques that performed best in Pearson et al.’s study, Ochiai [2] and DStar [31]. The parameter $*$ in DStar is set to 2. For MBFL, we used the two mainstream MBFL techniques, MUSE [5] and Metallaxis [4]. The formulae for calculating the suspiciousness are introduced in Section 2.1 and Section 2.2.

3.3.2 Dynamic Slicing

Our experiments use the JavaSlicer dynamic slicing tool [48]. JavaSlicer is based on the dynamic slicing algorithm of Wang and Roychoudhury [49, 50], with extensions for object-oriented programs. The JavaSlicer implementation attaches to the program as a Java agent and re-writes classes as they are loaded into the Java VM.

A test fails by throwing an exception, either because of a violated assertion or a runtime crash. If there is only a single failed test, we use the execution of the statement that throws the exception as the slicing criterion. The slice then contains all statements that may have affected the statement that throws the exception.

If there are multiple failed tests, our experiments apply three strategies from a previous study [51] to utilize multiple slices: union, intersection, and frequency. The first two strategies calculate the union or the intersection of the slices and report a set of statements as results. The frequency strategy calculates the inclusion frequency for each statement and reports a ranked list of statements based on the frequency. The more frequently a statement is included in the slice of a failed test, the more suspicious the statement is.

3.3.3 Stack Trace Analysis

As we discussed in Section 2.4, stack trace analysis can be used for crash faults, including run-time error and run-time exception. Our experiments consider a technique that relies on stack trace information based on the insight from Schroter et al. [52].

For a failed test case, the stack trace technique first checks the error message to determine the type of the fault. We define a fault as a crash fault if the error message is not thrown from the testing framework. If the fault is not a crash fault, the technique returns an empty suspicious list. If the fault is a crash fault, the suspicious list consists of the frames in the stack trace. According to Schroter et al. [52], if the stack trace includes the faulty method, around 40% of the faults can be located in the very first frame, and 90% of the faults can be located within the top 10 stack frames.

The stack trace technique labels suspiciousness based on depth information. For an element, if its first occurrence in the stack trace has depth d, the technique marks the element with $1/d$ score. This formula is consistent with the finding that the first frame has highest suspiciousness to be faulty. If there is more than one crash test case, the score of each element is the maximum score of this element in all stack traces.

3.3.4 Predicate Switching

We re-implemented Zhang et al.’s method of predicate switching for Java (the original implementation was for x86/x64 Linux binaries) [10]. Our implementation of the technique is based on Eclipse Java development tools (JDT). The technique first traces the execution of the failed test case and records all executed predicates. Then it forcibly switches the outcome of a predicate at runtime. Once switching a predicate makes the failed test case passed, it reports the predicate as a critical predicate. The technique produces a set of critical predicates as the suspicious program elements.

3.3.5 IR-based Fault Localization

Our experiments applied Buglocator, an open-source tool proposed in Zhou et al.’s work [11]. Buglocator ranks all files based on the textual similarity between the initial bug report and the source code file using a revised Vector Space Model (rSVM).

The finest granularity in our experiments is statement. Since the granularity in Buglocator is source file, our implementation maps the score of a suspicious file to all executable statements in it. For example, if Buglocator reports that file1.java has suspiciousness score 0.2, then it marks every executable statement in file1.java with suspiciousness score 0.2.

3.3.6 History-Based Fault Localization

Our experiments apply Bugspots, an open-source implementation of Rahman et al.’s algorithm [13]. Bugspots collects revision control changes with descriptions related to ‘fix’ or ‘close’. The tool ranks each file by weighting more recent bug-fixing changes higher than older ones.

Same as in Buglocator, the granularity in Bugspots is also source file. Our implementation maps the score of a suspicious file to all executable statements in the same way. Bugspots supports only Git repositories. However, the version control system of Chart in Defects4J uses a private format of Subversion and two public tools, git-svn [3] and svn2git [4], cannot convert this format. As a result, our experiments apply Bugspots on the Math, Lang, Time, and Closure projects.

2. https://github.com/igrigorik/bugspots
4. https://github.com/nirvdrum/svn2git
3.3.7 Learning to Rank
For the learning to rank model, our experiments associate each program statement with a vector

\[\text{Suspiciousness}(e) = (s_{t_1}(e), s_{t_2}(e), ...) \]

where \(e \) is a program element, and \(s_{t_j}(e) \) is the suspiciousness score of \(e \) reported by technique \(t_j \). The vector values are normalized to be within the domain \([0, 1]\), where 1 is most suspicious, and 0 is least suspicious.

Then our experiments apply \(\text{rankSVM} \) \(^{[53]} \) to train the learning to rank model. \(\text{RankSVM} \) is an open-source learning to rank tool based on \(\text{LIBSVM} \) \(^{[54]} \). It implements a pairwise learning to rank model and has been used in previous fault localization work \(^{[24]} \), \(^{[25]} \). It generates pairwise constraints, e.g., \(e_{\text{faulty}} > e_{\text{correct}} \), and the training goal is to rank the faulty elements at the top, i.e., maximize satisfied pairwise constraints.

3.4 Measurements
To evaluate fault localization techniques, we need to measure their performance quantitatively. Previous studies use similar metrics for this measurement, but they may differ in how they handle cases such as insertion or multiple faulty elements. This section describes the measurement methods used in our study.

3.4.1 Determining Faulty Elements
To understand how faulty elements are ranked, we need first to determine which elements in the program are faulty. Following common practice \(^{[17]} \), \(^{[24]} \), \(^{[25]} \), we define the faulty program elements as those modified or deleted in the developer patch that fixes the defect. In the following example patch, i.e., the \(\text{diff} \) file between fixed and faulty program, the second line is considered faulty:

```plaintext
1 if (real == 0.0 && imaginary == 0.0) {
2-   return NaN;
3+   return INF;
4 }  
5  
6 if (isInfinite) {
7    return ZERO;
8 }  
9 ...  
```

However, sometimes a developer patch only inserts new elements rather than modifies or deletes old elements. To deal with insertions, we follow the principle used by Pearson et al. \(^{[17]} \), a fault localization technique should report the element immediately following the inserted element. The rationale is that the immediately following element indicates the location that a developer should change to fix the defect.

3.4.2 Multiple Faulty Elements
Many defective programs have multiple defective elements. Based on the above protocol to determine faulty elements, it is common that we will determine multiple elements faulty in real-world projects. In Defects4J, there are two common reasons for multiple faulty elements:

- To repair a fault, the programmer changed multiple elements.
- The patch of a fault not only repairs the current fault but also repairs cloned bugs, i.e., the same bug in cloned code snippets.

Following existing work \(^{[17]} \), we consider a fault to be localized by a fault localization technique if any faulty element is localized. It is assumed that if a fault localization technique gives any of the faulty elements, the developer can infer the other faulty elements. Furthermore, when multiple cloned bugs exist, the developer can also re-run fault localization to find the others or can use techniques for repairing cloned bugs \(^{[55]} \), \(^{[56]} \) could be used to discover and to fix other bugs.

3.4.3 Elements with the Same Score
As mentioned before, it is common for fault localization techniques to assign the same suspiciousness score to elements, either because the techniques are designed to only locate elements but not to rank them (e.g., union strategy in slicing), or because the techniques cannot distinguish some elements (e.g., statements in a basic block in SBFL). When presenting the suspicious list to the user, the elements with the same score are presented in an arbitrary order, and thus we need to consider the order when measuring the performance.

Previous studies \(^{[17]} \), \(^{[41]} \), \(^{[57]} \) treat elements with the same score as all the \(n \)th element in the list, where \(n \) is their average rank. However, this method may unnecessarily lower their ranks when multiple faulty elements exist. For example, suppose a set of tied elements are all faulty. Then regardless how this set is sorted, the user will find a faulty element at the first element in the set, rather than at the average rank.

To overcome this problem, in our study we measure the performance of a fault localization by the expected rank of the first faulty element, assuming tied elements are arbitrarily sorted with an even distribution. More concretely, assuming a group of \(n \) tied elements starting at \(P_{\text{start}} \) that contains \(n_f \) faulty elements and there is no faulty element before \(P_{\text{start}} \), we define \(E_{\text{inspect}} \), which measures the expected rank of the first faulty element using the following formula.

\[
E_{\text{inspect}} = P_{\text{start}} + \frac{n-n_f}{n_f} \sum_{k=1}^{n_f} k \binom{n}{n_f-1} \binom{n_f-1}{k-1}
\]

The formula calculates the probability for the first element to appear in the \(k \)th location starting from \(P_{\text{start}} \), and the probability is calculated by dividing the number of all combinations where the first faulty element is at \(k \) \(\binom{n}{n_f-1} \) with the number of all combinations \(\binom{n_f}{n} \).

Notice that, when there is only one faulty element, i.e., \(n_f = 1 \), the equation reduces to:

\[
E_{\text{inspect}} = P_{\text{start}} + \frac{n - 1}{2}
\]

which is the same as average rank, also average accuracy, in existing studies \(^{[24]} \), \(^{[25]} \).
Also, when all tied elements are faulty, i.e., $n_f = n$, the equation reduces to:

$$E_{inspect} = P_{start}$$

which indicates the first element in the tied set.

3.4.4 Metrics

So far we have defined how to calculate the expected rank of the first faulty element. Based on this definition we use two metrics to measure the performance of a fault localization technique.

$E_{inspect}@n$ counts the number of successfully localized faults within the top n positions of the resultant ranked lists. It is adapted from metric $acc@n$ [24, 25]. A previous study [14] suggested that programmers will only inspect the top few positions in a ranked list, and $E_{inspect}@n$ reflects this.

EXAM [58] presents the percentage of elements that have to be inspected until finding a faulty element. It is a commonly used metric for fault localization techniques [17, 29, 59]. The EXAM score measures the relative position of the faulty element in the ranked list. Smaller EXAM scores are better.

4 Experiment Results

Our experiments investigate and answer six research questions. The granularity of all experiments is statements, except for Section 4.5 and Section 4.6.

4.1 RQ1. Effectiveness of standalone techniques

4.1.1 Procedure

To evaluate the effectiveness of standalone fault localization techniques, we invoked each technique on Defects4J and compared their $E_{inspect}@n$ and EXAM scores. The $E_{inspect}@n$ counts the number of successfully localized faults within the top n positions over 357 faults. The EXAM score is averaged across all 357 faults uniformly.

The $E_{inspect}@n$ metric is a more meaningful measure of fault localization quality than the EXAM score. A developer will only examine the first few reports from a tool (say, 5 or 10) and a program repair tool will only examine the first 200 or so reports. Therefore, any reports other than these are irrelevant and can be disregarded, yet they are most of the reports and dominate the EXAM score.

4.1.2 Results and Findings

Table 3 shows the $E_{inspect}@n$ and EXAM of each standalone technique.

Finding 1.1: SBFL is the most effective standalone fault localization family in our experiments.

Two techniques of SBFL, Ochiai and DStar, are the best and second best on $E_{inspect}@3$, 5, and 10. EXAM. The two techniques locate 156 and 155 faults (about 44% of all faults) at top 10 respectively. SBFL may underperform at $E_{inspect}@1$ because blocks are the minimum granularity that SBFL can identify. In a single execution, the statements in a basic block are all executed or not executed, so the elements in a basic block always have the same (e_f, e_p, n_f, n_p) values and the same score.

Finding 1.2: Bugspots is not an effective fault localization technique. Bugspots did not locate any fault in its top-10 statements and its EXAM score is the lowest, barely better than random guessing. A possible reason is that Bugspots works at the file granularity and all statements in a file will be tied. Even if the faulty statement is in the identified file, the statement will be tied with many other statements and will not be ranked high.

Finding 1.3: Stack trace is the most effective technique on crash faults.

Stack trace analysis only works on crash faults (Section 3.3.3). In the Defects4J dataset, 25% of the faults (90 out of 357) are crash faults, including application-defined exceptions, out of memory errors, and stack overflow errors, to which stack trace analysis can be applied. Table 4 shows the performance of each standalone technique on crash faults. Stack trace analysis locates 22% of crash faults (20 out of 90) at top-1.

4.2 RQ2. Effectiveness of techniques on crash faults

4.2.1 Procedure

In the Defects4J dataset, 25% of the faults (90 out of 357) are crash faults, including application-defined exceptions, out of memory errors, and stack overflow errors, to which stack trace analysis can be applied. Table 4 shows the performance of each standalone technique on crash faults. Stack trace analysis locates 22% of crash faults (20 out of 90) at top-1.

4.2.2 Results and Findings

Finding 1.2: Bugspots is not an effective fault localization technique. Bugspots did not locate any fault in its top-10 statements and its EXAM score is the lowest, barely better than random guessing. A possible reason is that Bugspots works at the file granularity and all statements in a file will be tied. Even if the faulty statement is in the identified file, the statement will be tied with many other statements and will not be ranked high.

Finding 1.3: Stack trace is the most effective technique on crash faults.
4.2 RQ2. Correlation between Techniques

This research question explores the possibility of combining different techniques. Two techniques are (positive) correlated if they are good at localizing the same sorts of defects. If two techniques are less correlated, they may provide different information and combining them has the potential to outperform either of the component techniques.

4.2.1 Procedure

First, to visually illustrate the correlation between techniques, we drew the results of each pair of techniques as a scatter plot. Each figure has 375 points, one for each fault in our dataset. The coordinate \((x, y)\) for a fault means on this fault, the \(E_{inspect}\) for technique on X-axis is \(x\), and the \(E_{inspect}\) for technique on Y-axis is \(y\).

Further, to quantify the correlation between each pair of techniques, this paper applied the coefficient of determination metric, denoted as \(r^2\). In statistics, \(r^2\) is the measure of the linear correlation between two variables \([60]\). In this experiment, \(r^2\) shows the magnitude of the correlation between two fault localization techniques. This paper also determines the \(p\)-value, to determine whether the correlation coefficient is significant.

Finding 1.4: Predicate switching is not the most effective technique on “predicate-related” faults.

A predicate-related fault is one whose patch modifies the predicate in a conditional statement. In the Defects4J dataset, 32% of the faults are predicate-related faults. Table 5 shows the performance of each standalone technique on predicate-related faults. It was surprising to us that MBFL family works better than predicate switching on predicate-related faults. When working on predicates, MBFL and predicate switching have similar mechanisms. They both modify the predicates and check whether the execution result changes. Predicate switching may underperform than MBFL because MBFL can further rank the critical predicates (modifying which can change the execution result) while predicate switching cannot.

4.2.2 Qualitative Results

Figure 1 is scatter plots visualize the correlation between three sample pairs of techniques. The three pairs capture typical patterns of the plots, and we omit the rest of the plots as they are similar to one of the three plots.

Finding 2.1: Different correlation patterns exist between different pairs of techniques.

In Fig. 1 (A), most points lie on the diagonal. This distribution pattern means the two SBFL techniques, Ochiai and DStar, have almost the same \(E_{inspect}\) values on all faults. In other words, the two techniques are very correlated and are unlikely to provide more information to each other.

In Fig. 1 (B), there are many faults located in upper-left and lower-right regions, which correspond to faults that one technique works well on, while the other works poorly. These faults suggest that the two techniques are not positively correlated.

The dots in Fig. 1 (C) are located on the diagonal in the upper right region, but they are scattered in other regions. This pattern indicates that there are a set of faults where both techniques perform poorly, but there are also many faults where one technique performs well but the other does not. Recall that a developer will only examine the first few reports from a tool (say, 5 or 10) and a program repair tool will only examine the first 200 or so reports. When computing the correlation, we used all points such that \(x \leq q\) or \(y \leq q\), for threshold \(q = 100\).

4.2.3 Quantitative Results

Table 6 shows the coefficient of determination, \(r^2\), between each pair of techniques. Different from Fig. 1 which is a log-

TABLE 5

| Family | Technique | \(|@1\)| | \(|@3\)| | \(|@5\)| | \(|@10\)| | \(EXAM\) |
|--------|-------------|-----|-----|-----|-----|-----|
| SBFL | Ochiai | 5 (4%) | 20 (17%) | 29 (25%) | 43 (37%) | 0.027 |
| | DStar | 5 (4%) | 21 (18%) | 30 (26%) | 43 (37%) | 0.028 |
| MBFL | Metallaxis | 8 (7%) | 25 (22%) | 34 (30%) | 44 (38%) | 0.090 |
| | MUSE | 13 (11%) | 24 (21%) | 32 (28%) | 35 (30%) | 0.174 |
| | slicing | 0 (0%) | 6 (5%) | 12 (10%) | 26 (23%) | 0.171 |
| | intersection frequency | 0 (0%) | 9 (8%) | 13 (11%) | 20 (17%) | 0.185 |
| | | 0 (0%) | 10 (9%) | 15 (13%) | 27 (23%) | 0.172 |

Fig. 1. The Correlation of Three Example Pairs of Techniques. The X and Y values for a point show the \(E_{inspect}\) values for two techniques on the same bug. \(E_{inspect}\) is the expected rank of the first faulty element in the FL tool’s output, or the number of elements that a user would have to inspect before inspecting a faulty element.
scale plot, this experiment calculates r^2 based on $E_{inspect}$, without log-scale normalization. Notice that the table is a symmetric matrix.

Finding 2.2: Most techniques are weakly correlated, including all techniques in different families.

In Table 5, there are 55 pairs of different techniques. Only two of them are significantly correlated at p-value less than 0.05 level: (Ochiai, DStar) from SBFL, with $r^2 = 0.753$, p-value $\ll 0.01$, and (union, frequency) from slicing, with $r^2 = 0.310$, p-value $\ll 0.01$. The r^2 values in other pairs of techniques are much smaller, and the p-values of them are larger than 0.05, which suggests that there is no statistically significant correlation between other pairs of techniques, at least for the reports that a programmer or tool may view.

We found that there are 50 pairs of techniques from different families and all of them are weakly correlated. Two techniques may provide different information when they are less correlated. Since there exist many weakly correlated pairs, if a method could utilize the information from different techniques, it may improve the effectiveness of fault localization.

Finding 2.3: The strongly correlated techniques only exist in the same family, but not all techniques in the same family are strongly correlated.

The most correlated pair of techniques, Ochiai and DStar, is from the SBFL family. The second most correlated pair is from the slicing family. However, not all techniques from the same family are strongly correlated. For example, the two from MBFL family are not weakly correlated, so is intersection with other slicing techniques. This finding suggests that though it may be less promising to combine techniques from the same family, it is still worth investigating.

4.3 RQ3. Effectiveness of Combining Techniques

Section 4.2 indicates that the techniques are potentially complementary to each other. This section applies the learning to rank model to combine techniques.

4.3.1 Procedure

Our experiments perform cross-validation to evaluate the ranking model. Cross-validation estimates model performance without losing modeling or test capability despite small data size. In particular, we used two cross-validation methods.

- **k-fold validation.** This simulates within-project training. The original data were randomly split into k different sets of the same size and the training-validation is performed k times, each time training on $k-1$ sets and validating on the other set. We set $k = 10$ in our experiment.
- **Cross-project validation.** This simulates cross-project training. We treat one project as the test set and the other projects as the training sets, and repeat the process for each project.

We performed two sets of experiments to evaluate the combined technique.

- The first experiment measured the performance of combining all techniques.
- The second experiment evaluated the contribution of each fault localization family. We excluded one family at a time and repeated the learning to rank procedure.

4.3.2 Results and Findings

Finding 3.1: The two cross-validation methods yield similar evaluation results.

Table 7 shows the results of the first experiment on validation methods. The evaluation results of the two validation methods are similar. Both of the two validation methods indicate that the combined technique significantly outperforms any standalone techniques in Table 5. These
Learning to Rank Results. Learning to rank is significantly better than any original technique. The reduction of excluding a family is marked after the E_{inspect} value. The Ochiai, DStar, and MUSE rows are copied from Table 8 for comparison.

<table>
<thead>
<tr>
<th>Family / Technique</th>
<th>@1</th>
<th>@3</th>
<th>@5</th>
<th>@10</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>All Families</td>
<td>72 (20%)</td>
<td>137 (38%)</td>
<td>168 (47%)</td>
<td>205 (57%)</td>
<td>0.0173</td>
</tr>
<tr>
<td>w/o SBFL</td>
<td>61 (-1)</td>
<td>120 (-17)</td>
<td>145 (-23)</td>
<td>186 (-27)</td>
<td>0.0225</td>
</tr>
<tr>
<td>w/o MBFL</td>
<td>52 (-20)</td>
<td>122 (-15)</td>
<td>148 (-20)</td>
<td>194 (-11)</td>
<td>0.0206</td>
</tr>
<tr>
<td>w/o slicing</td>
<td>58 (-14)</td>
<td>129 (-8)</td>
<td>165 (-3)</td>
<td>201 (4)</td>
<td>0.0190</td>
</tr>
<tr>
<td>w/o stack trace</td>
<td>63 (-9)</td>
<td>133 (-4)</td>
<td>161 (-7)</td>
<td>199 (6)</td>
<td>0.0176</td>
</tr>
<tr>
<td>w/o predicate switching</td>
<td>68 (-4)</td>
<td>136 (-1)</td>
<td>165 (-3)</td>
<td>198 (7)</td>
<td>0.0178</td>
</tr>
<tr>
<td>w/o IR-based</td>
<td>66 (-6)</td>
<td>134 (-3)</td>
<td>162 (-6)</td>
<td>194 (11)</td>
<td>0.0173</td>
</tr>
<tr>
<td>w/o history-based</td>
<td>71 (-1)</td>
<td>136 (-1)</td>
<td>167 (-1)</td>
<td>203 (2)</td>
<td>0.0173</td>
</tr>
</tbody>
</table>

Ochiai | 16 (4%) | 81 (23%) | 111 (31%) | 156 (44%) | 0.033 |
DStar | 17 (5%) | 84 (24%) | 111 (31%) | 155 (43%) | 0.033 |
MUSE | 24 (7%) | 44 (12%) | 58 (16%) | 68 (19%) | 0.304 |

Table 8 shows the results of the two experiments on combined techniques. The All Families row presents the results of the first experiment, i.e., the results of combining all families. The next rows present the results of the second experiment, where each row shows the performance of excluding one family at a time. The reduction of excluding a family is marked after the E_{inspect} value.

The combined technique in the All Families row is significantly better than any standalone techniques. At $E_{\text{inspect}}@1$, 3, 5, 10, the combined technique improves 200%, 63%, 46% and 31% over the former best, respectively. At EXAM, it improves from 0.033 to 0.0173, an improvement of 48% from the former best. These results indicate that learning to rank is an effective method to combine different fault localization techniques and the performance of the combined technique is significantly improved.

Finding 3.3: The contribution of each technique to the combined result is not determined by its effectiveness as a standalone technique.

For example, while IR-based family could not locate any bugs in Top 1–5 and predicate switching can locate 3–20 bugs in Top 1–5, removing IR-based family has a larger impact than predicate switching in Top 1–5. This finding indicates that, when evaluating fault localization techniques, it is not enough to evaluate their individual performance: we need to evaluate how much more they can contribute over the existing families of techniques.

Finding 3.4: All families contribute to the overall results.

Table 8b shows that removing any family decreases all metrics. Bugspots, which does not rank any faulty element into the top 10 when used alone, slightly improved all $E_{\text{inspect}}@n$ values when combined with other techniques.

4.4 RQ4. Time Consumption and Combination Strategy

This research question measures the efficiency of each technique. Furthermore, we explored the optimal combination strategy under different time limitations, corresponding to various debugging scenarios.

4.4.1 Procedure

We designed two experiments here. The first experiment simply measured the time consumption for each fault localization technique. We also measured the run time for the learning to rank model, which presents the combination overhead. The second experiment combined fault localization families one by one and measured the execution time and the performance of the combined technique in order to find optimal combinations under different time limits.

Our experiments include or exclude an entire family at a time, rather than including/excluding specific techniques. The reason is that for each family, all techniques use the same raw data. Once the raw data is collected, the overhead for applying an extra technique from the same family is only re-calculating the scores and re-ranking the program elements, which is negligible. Since the cost is negligible, we include all the techniques for the family when we include any technique for the family.

4.4.2 Results and Findings

Table 8 shows the time consumption for each technique. The average column presents the average time consumed per fault over the whole dataset, and the project name columns present the run time for the specific project.

Finding 4.1: The training time for learning to rank is small compared to the fault localization time.

The learning to rank row at the bottom of Table 8 shows the overhead for the training procedure, which costs around 10 seconds on average. Since the combination of techniques involves at least two different techniques, this result suggests the overhead introduced by learning to rank model is small.

Finding 4.2: The efficiency of families can be categorized into several levels with different orders of magnitude.

In Table 8, we found that the running time for families differs significantly. We categorized the families into four levels based on efficiency and mechanism:

- Level 1: history-based, stack trace, and IR-based. Bugspots is the fastest technique; it only needs to examine the development history. Stack trace is also a fast technique; it needs to execute the test cases, once. IR-based technique measures the textual similarity between the bug report and the source files, which only takes a few seconds.
- Level 2: slicing and SBFL. The slicing and SBFL families have similar mechanisms. They need to trace the execution of test cases, once. The main difference that affects the efficiency is that SBFL needs to trace all the test cases while slicing only needs to trace failed test cases.
- Level 3: predicate switching. Predicate switching is slower than the above families; it needs to modify predicates in the program and execute test cases multiple times.
- Level 4: MBFL. MBFL is the slowest family; it needs to modify all possible statements in the program and execute test cases multiple times.
TABLE 9

| Time Consumption of Each Technique (in seconds, to 2 digits of precision) |
|---|---|---|---|---|---|---|---|
| **Level 1 (Seconds)** | **Family** | **Technique** | **Average** | **Math** | **Lang** | **Time** | **Chart** |
| history-based | Bugs spots | 0.54 | 0.66 | 0.22 | 0.20 | - | 0.67 |
| stack trace | stack trace | 1.3 | 0.17 | 0.15 | 0.39 | 0.18 | 3.1 |
| IR-based | Buglocater | 5.6 | 6.6 | 4.3 | 4.7 | 4.6 | 5.8 |
| **Level 2 (Minutes)** | **slicing** | union | 80 | 44 | 39 | 29 | 47 | 150 |
| | intersection | 80 | 44 | 39 | 29 | 47 | 150 |
| | frequency | 80 | 44 | 39 | 29 | 47 | 150 |
| SBFL | Ochiai | 200 | 86 | 26 | 85 | 44 | 430 |
| | DStar | 200 | 86 | 26 | 85 | 44 | 430 |
| **Level 3 (Around ten minutes)** | **predicate switching** | | 620 | 170 | 73 | 1100 | 120 | 1200 |
| **Level 4 (Hours)** | **MBFL** | | 4800 | 3000 | 270 | 12000 | 5400 | 7000 |
| | MUSE | | 4800 | 3000 | 270 | 12000 | 5400 | 7000 |

Finding 4.3:
To achieve optimal strategies, once a technique is performed, all families in the preceding time level should be included.

In Table 9 we found that families in different level may consume a different order of magnitude of time. Since including preceding level families only slightly affects the time consumption but always improves the results, all techniques in preceding level should be included for an optimal strategy. Based on this insight, Table 10 shows the combinations at different time consumption levels, and the estimated time consumption. If more than one family is included, the estimated time consumption is the running time for each family and the training time for learning to rank. For each level, we merged the corresponding families into the preceding time levels one by one.

Table 10 shows that performance is significantly improved from level 1 to level 2. This result means slicing and SBFL brings vital information to the combined technique. It is also notably improved from level 3 to level 4, which means MBFL brings useful information to the combined technique, but it is also very costly.

Using Table 10, developers can pick the best combination of techniques based on their debugging scenarios. For example, in real-time debugging, developers may try the combination at level 2, which only costs a few minutes. In some other scenario, developers may spend days to fix a bug [61], which makes level 4 running time reasonable, as it can generate the most helpful results and save human effort. If the fault is a crash fault, the developer may try level 1 first, which gives the result instantly and is effective for crash bugs. Since level 3 is three times as expensive as level 2 but the results are barely different, a developer would never choose to run level 3.

Finding 4.4:
Level 2 and Level 4 are two levels with good balance between effectiveness and efficiency, while Level 1 is a good choice for crash bugs.

TABLE 10

<table>
<thead>
<tr>
<th>Time Level</th>
<th>Technique</th>
<th>Estimated Time</th>
<th>@1</th>
<th>@3</th>
<th>@5</th>
<th>@10</th>
<th>EXAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>stack trace</td>
<td>1.3</td>
<td>19 (5%)</td>
<td>29 (8%)</td>
<td>35 (10%)</td>
<td>35 (10%)</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>history-based</td>
<td>0.54</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>stack trace + history-based</td>
<td>13</td>
<td>19 (5%)</td>
<td>29 (8%)</td>
<td>35 (10%)</td>
<td>35 (10%)</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>stack trace + history-based + IR-based</td>
<td>19</td>
<td>25 (7%)</td>
<td>42 (12%)</td>
<td>53 (15%)</td>
<td>63 (18%)</td>
<td>0.0421</td>
</tr>
<tr>
<td>Level 2</td>
<td>Level 1 + slicing</td>
<td>98</td>
<td>28 (8%)</td>
<td>65 (18%)</td>
<td>95 (27%)</td>
<td>124 (35%)</td>
<td>0.0353</td>
</tr>
<tr>
<td></td>
<td>Level 1 + SBFL</td>
<td>220</td>
<td>39 (11%)</td>
<td>105 (29%)</td>
<td>132 (37%)</td>
<td>174 (49%)</td>
<td>0.0244</td>
</tr>
<tr>
<td></td>
<td>Level 1 + SBFL + slicing</td>
<td>300</td>
<td>52 (15%)</td>
<td>120 (34%)</td>
<td>146 (41%)</td>
<td>189 (53%)</td>
<td>0.0217</td>
</tr>
<tr>
<td>Level 3</td>
<td>Level 2 + predicate switching</td>
<td>920</td>
<td>52 (15%)</td>
<td>122 (34%)</td>
<td>148 (41%)</td>
<td>194 (54%)</td>
<td>0.0206</td>
</tr>
<tr>
<td>Level 4</td>
<td>Level 3 + MBFL</td>
<td>5700</td>
<td>72 (20%)</td>
<td>137 (38%)</td>
<td>168 (47%)</td>
<td>205 (57%)</td>
<td>0.0173</td>
</tr>
</tbody>
</table>

4.5 RQ5. Results at Method Granularity

Sections 4.1 to 4.4 answered the RQs at statement granularity. Some other studies have suggested that method may be a better granularity for developers [24, 46]. In this research question, we mapped the previous results to method granularity and checked whether the answers still hold.

4.5.1 Procedure

The suspicious score for a method is defined as the maximum score of its statements. Based on this definition, we performed similar experiments in RQ1 and RQ3 and evaluated the results on $E_{inspect}@n$ and EXAM.
4.5.2 Results and Findings

Finding 5.1: The main findings in RQ1 and RQ3 still hold at method granularity. Table 11 shows the $E_{inspect}@n$ and EXAM for each technique. The EXAM here presents the percentage of methods needed to inspect before finding the faulty one. The findings in RQ1 still hold at method granularity:

- SBFL is the most effective fault localization family. Ochai and DStar hold the best performance on all metrics.
- Stack trace is the most effective technique on crash faults. Based on 88 crash faults, stack trace can locate 44% of them at top-1, and 83% at top-10.
- The relative performance between techniques has no significant changes.

Table 12 shows the results of learning to rank model. The results are significantly improved from standalone techniques in Table 11 which is consistent with the main findings in RQ3.

4.6 RQ6. Comparison with State-of-the-Art Techniques

Recently a set of approaches [23, 24, 25, 26] are proposed to improve the performance of fault localization. Interestingly, these approaches also use learning to rank techniques, but combine either techniques in one family or augmenting one family with additional information. To further evaluate the performance of our approach, we compared the results with these techniques. A detailed discussion of the compared techniques can be found in Section 5.1.

We obtained the performance of the compared approaches on Defects4J from previous publications [24, 25, 26]. Three of them (MULTRIC, Savant, TraPT) were evaluated on the whole dataset of Defects4J, while FLUCCS was evaluated on a subset of Defects4J containing 210 faults. To compare with FLUCCS, we also performed a cross-validation of our approach over the subset of 210 faults. All results of the compared approaches were obtained via cross-validation, where FLUCCS uses 10-fold cross-validation, and MULTRIC, Savant, and TraPT use 357-fold cross-validation.

Table 13 shows the top-1 metric for each technique. CombineFL is the approach proposed in this paper. Notice that, this paper used newly defined metrics $E_{inspect}$ at top-n and others used average rank at top-n, and these two metrics are only equivalent when $n = 1$. All results are at the method granularity as all the compared approaches support only method granularity.

The result in Table 13 shows that our approach (CombineFL) is significantly better than all these techniques. This result indicates that combining techniques from different families is an effective way to improve the performance of fault localization approaches. Furthermore, some information used in the compared approaches are not used in our approach, so we may further combine these techniques to achieve potentially better results in the future.

Notice that, the aforesaid discussion only compares the performance between the approaches. In practice, the efficiency is also an important metric when comparing approaches. For example, since FLUCCS does not include the mutation component, it might require significantly less execution time than CombineFL. However, the existing papers did not report the efficiency of these approaches, and a systematical comparison of efficiency is left for future work.

5 RELATED WORK

To our knowledge, this paper is the first empirical study on a wide range of fault localization families.

5.1 Learning to Combine

Several studies have applied learning to rank model to improve the effectiveness of fault localization techniques. Typical studies include those by Xuan and Monperrus [23], Le et al. [24], Sohn and Yoo [25], Li and Zhang [26].

Xuan and Monperrus [23] proposed a learning-based approach, MULTRIC, to integrate 25 existing SBFL risk formulae. They conducted the experiments on ten open-source Java programs with 5386 seeded (artificial) faults, and found that MULTRIC is more effective than theoretically optimal formulae studied by Xie et al. [1]. In this paper, we found that different techniques in SBFL family may contain strongly correlated information on real-world projects. To further improve the fault localization effectiveness, extra
information sources should be introduced rather than only considering SBFL family.

Le et al. [24] presented Savant, which augmented SBFL with Daikon invariants as an additional feature. They applied learning to rank model to integrate SBFL techniques and invariants information. They evaluated Savant on real-world faults from the Defects4J dataset and found that Savant outperforms the best four SBFL formulae in baselines, including MULTRIC.

Sohn and Yoo [25] proposed FLUCCS, which extended SBFL techniques with code change metrics. They applied two learning to rank techniques, Genetic Programming, and linear rank Support Vector Machines. They also evaluated FLUCCS on the Defects4J dataset and found FLUCCS exceeds the state-of-the-art SBFL techniques.

Li and Zhang [25] proposed TraPT, which used learning to rank technique to extend MBFL with mutation information gathered from test code and messages. The experimental result shows that TraPT notably outperforms state-of-the-art MBFL and SBFL techniques.

To sum up, existing studies mainly focus on combining techniques in one family or augmenting one family with additional information. Compared with these studies, this paper is the first comprehensive and systematic study trying to combine techniques on a wide range of families. Our study includes seven different families and ten techniques from these families, and has analyzed in detail the contribution and the cost of each technique. The combined technique significantly outperforms any single technique. Nevertheless, we also observe that existing studies use some information that has not been considered in this paper. It remains as future work to explore how the additional information could contribute to the combined technique.

5.2 Empirical Studies on Fault Localization
Fault localization techniques have been extensively evaluated in empirical setting.

Jones and Harrold [18] introduced Tarantula, an SBFL technique and compared Tarantula with other four techniques: Set Union, Set Intersection, Nearest-Neighbor, and Cause Transitions on Siemens test suite. They found that Tarantula outperforms the rest techniques on both effectiveness and efficiency. Set Union, Set Intersection, and Nearest-Neighbor are fault localization techniques based on test coverage, just like SBFL.

Abreu et al. [2] introduced Ochiai, another SBFL technique and considered three SBFL techniques: Ochiai, Jaccard, and Tarantula. They evaluated three techniques on the Siemens test suite and found that Ochiai outperforms the other techniques.

Le et al. [66] also empirically evaluated several SBFL techniques on the Siemens test suite, to check whether the theoretically and practically best SBFL techniques match. This study suggested that Ochiai outperforms the theoretically optimal techniques by Xie et al. [1], due to the optimality assumptions are unmet on their dataset.

Wong et al. [31] introduced DStar and compared over thirty SBFL techniques on nine different sets of programs, including Siemens test suite and several other real-world projects. They found that DStar is more effective than all other techniques on all projects.

Pearson et al. [17] evaluated SBFL and MBFL techniques on both artificial and real-world faults to find whether the previous findings over artificial faults still hold on real-world faults. They identify several cases where results on artificial faults are different from those on real-world faults, indicating that experimenting over real-world faults is important.

Zhang et al. [38] evaluated three dynamic slicing techniques on a set of real-world faults. They found that data slicing is effective for memory related faults and full slicing was adequate for other faults. None of the faults required Relevant slicing in their dataset.

To sum up, existing studies mainly focus on evaluating techniques in one family, in particular, the SBFL family. Compared with these studies, our work evaluates a wide range of seven families. In addition, we also evaluate on large real-world projects and use a new metrics to better measure the elements with the same score. Finally, we also evaluate the combination of different techniques.

6 Implications
The findings in our study have many implications for the future research of fault localization, and we highlight a few of them in this section.

6.1 Evaluating Fault Localization Techniques
Traditionally, fault localization techniques are often evaluated individually, and their performances are combined against each other. However, this paper reveals that, no matter how different the fault localization techniques are, as long as they assign suspicious scores to the elements, it is easy to combine them. As a result, users would probably not use a technique standalone, but instead combining a suitable set of techniques within a time limit. Accordingly, besides understanding the performance of an individual technique, it is also important to understand how the technique contributes to the combination of the existing techniques. This includes two aspects: (1) how much this technique can contribute to the combination of all existing approaches, and (2) how much this technique can contribute to the combination within a specific time limit. That is, both effectiveness and efficiency should be considered.

6.2 Infrastructure for Evaluating Fault Localization Techniques
The infrastructure of this experiment also forms an infrastructure of evaluating future fault localization techniques. To facilitate future research, we have published the infrastructure open source, available at: https://combinefel.github.io/. Given a user-selected combination of techniques, our infrastructure automatically calculates its $E_{inspect}$ and EXAM scores on Defects4J and measures the execution time. To integrate a new technique into the dataset, the user only needs to provide the suspicious scores for program elements in each defect, as well as the execution time, in a specific format. Then the combinations of the newly added technique with any other existing techniques are automatically supported. Both the statement granularity and the method granularity are supported.
6.3 Efficiency

In the existing evaluation of fault localization approaches, efficiency often receives less attention than effectiveness. However, our study reveals that different techniques may have huge differences in the execution time, and the efficiency issues may render some techniques infeasible under certain scenarios. Thus, we believe that efficiency is also a critical issue that must be taken into consideration when evaluating fault localization techniques. Furthermore, it also suggests that optimizing the efficiency of fault localization techniques [70] is a promising direction and more research efforts could be put into it. On the other hand, it is so far not clear how exactly efficiency affects the debugging performance of developers. This relates to questions such as: is it worthwhile to wait for the fault localization technique to produce a more accurate result or should the developer start with a less accurate result? Future work is needed to answer these questions.

6.4 Information Sources

Our study reveals that, when the techniques use the same information source, their performances are similar. Thus, in the research for more effective fault localization techniques, it seems to be more promising to find more information sources than optimizing on existing information sources. Recent studies [24, 25, 26] also confirm that, when integrating more information sources, the performance could significantly outperform any techniques in the SBFL family.

6.5 Methods for Combining Approaches

In our study, we have used a learning to rank approach to combine different techniques. This approach treats different techniques as black boxes and combines the suspicious scores linearly. While being simple to use, this approach also has multiple limitations. First, treating different techniques as black boxes disallows fine-grained combination. For example, different techniques may contain the same computations, but treating them as black boxes does not allow us to reuse these computations. Also, it could be more effective to combine some intermediate results rather than the final suspicious scores, but treating existing techniques as black boxes does not allow us to utilize any intermediate results. Second, the linear combination may not be the optimal way, and other possibilities are left to be explored. Third, this approach requires a training process, and how much the training data affect the effectiveness is yet unknown. These limitations call for new research on novel ways to combine different techniques as well as understanding more about the learning to rank approach.

7 Conclusion

This paper investigates the performance of a wide range of fault localization techniques, including eleven techniques and seven families, on 357 real-world faults. We evaluated the effectiveness of each standalone fault localization technique. Then we applied learning to rank model to combine these fault localization techniques. Finally, we also measured the execution time. Our experiments included both statement and method level granularities.

Our experiments found that, while most techniques are effective on the benchmark, the performance of combined techniques significantly outperforms any standalone technique. Furthermore, different techniques have significant different execution time. Based on these findings, we believe that a reasonable setting of applying fault localization is to combine fault localization techniques grouped by different time levels, and future fault localization techniques should also be evaluated at this setting. To facilitate the research and application in this setting, we release our implementation as an infrastructure for evaluating and combining fault localization techniques.

Acknowledgments

This material is based on research sponsored by Air Force Research Laboratory and DARPA under agreement numbers FA8750-12-2-0107, FA8750-15-C-0010, and FA8750-16-2-0032. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

References

5. https://combinefl.github.io/

Yingfei Xiong is an assistant professor under the young talents plan at Peking University. He got his Ph.D. degree from the University of Tokyo in 2009 and worked as a postdoctoral fellow at University of Waterloo between 2009 and 2011. His research interest is software engineering and programming languages.

Michael D. Ernst is a Professor of Computer Science & Engineering at the University of Washington. Ernst’s research aims to make software more reliable, more secure, and easier (and more fun!) to produce. His primary technical interests are in software engineering, programming languages, type theory, security, program analysis, bug prediction, testing, and verification. Ernst’s research combines strong theoretical foundations with realistic experimentation, with an eye to changing the way that software developers work.

Daming Zou received the BS degree in computer science and technology from Peking University. He is currently working toward the PhD degree under the supervision of Professor Lu Zhang and Professor Yingfei Xiong at Peking University. His research interests include software testing, debugging, and program repair.

Jingjing Liang is a Ph.D. Student under the supervision of Professor Yingfei Xiong at Peking University. She received the BS degree in software engineering from East China Normal University. Her research interest is fault localization and program repair.

Lu Zhang is a professor at the School of Electronics Engineering and Computer Science, Peking University, P.R. China. He received both PhD and BSc in Computer Science from Peking University in 2000 and 1995 respectively. He was a postdoctoral researcher in Oxford Brookes University and University of Liverpool, UK. He served on the program committees of many prestigious conferences, such FSE, OOPSLA, ISSSTA, and ASE. He was a program co-chair of SCAM2008 and a program co-chair of ICSM17. He has been on the editorial boards of Journal of Software Maintenance and Evolution: Research and Practice and Software Testing, Verification and Reliability. His current research interests include software testing and analysis, program comprehension, software maintenance and evolution, software reuse and component-based software development, and service computing.